SCOR Working Group 165

Mixotrophy in the Oceans – Novel Experimental designs and Tools for a new trophic paradigm (MixONET)

Chair(s)
Aditee Mitra (UK) and George McManus (USA)
Other Full Members
Anukul Buranapratheprat (Thailand), Helga do Rosario Gomes (USA), Robinson Mugo (Kenya), Kunnatholickal Balakrishnan Padmakumar (India), Beatriz Reguera (Spain), Tina Šilović (Netherlands), Mengmeng Tong (China), Fernando Unrein (Argentina)
Associate Members
Ahmed Al-Alawi (Oman), Áurea Maria Ciotti (Brazil), Patricio A. Diaz (Chile), Amany Ismael (Egypt), Hae Jin Jeong (Korea), Michaela Larsson (Australia), Maite Maldonado (Canada), Luciana Santoferrara (USA), Koji Suzuki (Japan)
Reporter
Ilka Peeken
Terms of Reference
  1. Biological oceanography databases and the mixoplankton paradigm: Advocate for the realignment of existing plankton-facing databases in light of the mixoplankton paradigm. Identify connections between mixoplankton communities and essential ocean variables.

  2. Biological oceanography research methods under the mixoplankton paradigm: Re-evaluate extant standard biological oceanographic research methods and practices for application under the mixoplankton paradigm. For example, conventional fixatives often destroy the delicate mixoplankton, while more gentle ones obscure the presence of chloroplasts. Also, pico- and nano-planktonic organisms are routinely counted using flow cytometry or epifluorescence microscopy; while standard protocols can discriminate between pigmented and colourless plankton, they are not geared for identification and quantification of mixoplankton.

  3. Development of new biological oceanography methods accounting for primary and secondary productions by mixoplankton: Evaluate development of (a) routine new methods and simple protocols that could be incorporated routinely in ongoing monitoring programmes to better quantify mixoplankton and interpret their activities; and (b) new experimental and observing methods (including autonomous technologies) for quantifying and monitoring mixoplanktonic abundance and activity.

  4. Ocean literacy: Development of multi-lingual training material for Early Career Researchers (ECRs), ecosystem managers, teachers and students, to enhance ocean literacy. The mixoplankton paradigm needs to be brought to the attention of students through to policy makers. A Decision Support Tool (DST) will be developed to aid configuration of mixoplankton-centric experiments to determine contributions to primary versus secondary production by these organisms.

Approved
October 2021
Financial Sponsors
SCOR, NSF
Meetings
  1. February 2022 (online)

  2. 6-8 June 2022, Baiona, Spain

  3. September 2022 (online)

  4. June 2023 in Palma de Mallorca, Spain

Group Website
https://www.mixotroph.org/mixonet/
Publications
  • Mitra, A., McManus, G. B. (2022) MixONET, new SCOR WG #165 on Mixotrophy. In Harmful Algae News. Editors Beatriz Reguera, Eileen Bresnan. 70: 17-18. https://doi.org/10.5281/zenodo.6782899

  • Yokouchi, K., Suzuki, K., and Horiguchi, T. (2022). Comparative analyses of nutritional strategies among the species within the genus Paragymnodinium (Gymnodiniales, Dinophyceae). Journal of Phycology 58, 490–501. doi: 10.1111/jpy.13253.
  • Endo, H., Umezawa, Y., Takeda, S., and Suzuki, K. (2023). Haptophyte communities along the Kuroshio current reveal their geographical sources and ecological traits. Molecular Ecology 32, 110–123. doi: 10.1111/mec.16734.
  • Díaz, P. A., & Figueroa, R. I. (2023). Toxic Algal Bloom Recurrence in the Era of Global Change: Lessons from the Chilean Patagonian Fjords. Microorganisms, 11(8). https://doi.org/10.3390/microorganisms11081874
  • Mitra, A., Caron, D. A., Faure, E., Flynn, K. J., Leles, S. G., Hansen, P. J., et al. (2023). The Mixoplankton Database (MDB): Diversity of photo‐phago‐trophic plankton in form, function, and distribution across the global ocean. J Eukaryotic Microbiology, e12972. doi: 10.1111/jeu.12972.
  • Mitra, A., and Flynn, K. J. (2023). Low rates of bacterivory enhances phototrophy and competitive advantage for mixoplankton growing in oligotrophic waters. Sci Rep 13, 6900. doi: 10.1038/s41598-023-33962-x.
  • Tillmann, U., Mitra, A., Flynn, K. J., & Larsson, M. E. (2023). Mucus-Trap-Assisted Feeding Is a Common Strategy of the Small Mixoplanktonic Prorocentrum pervagatum and P. cordatum (Prorocentrales, Dinophyceae). Microorganisms, 11(7), Article 7. https://doi.org/10.3390/microorganisms11071730
  • McManus, G., Mitra, A., Reguera, B., & Santoferrara, L. (2023). The Mixoplankton paradigm in plankton ecology. In Harmful Algae News. Editors B. Reguera, E. Bresnan. 73: 15-18. http://www.e-pages.dk/ku/1556/.

  • Baldrich, A. M., Díaz, P. A., Rosales, S. A. , Rodríguez-Villegas, C., Álvarez, G., Pérez-Santos, I., Díaz, M., Schwerter, C., Araya, M., & Reguera, B. (2024) An unprecedented bloom of oceanic dinoflagellates (Karenia spp.) inside a fjord within a highly dynamic multifrontal ecosystem in Chilean Patagonia. Toxins 16: 77. https://doi.org/10.3390/toxins16020077.
  • Mitra, A. & Leles, S. G. (2023). A revised interpretation of marine primary productivity in the Indian Ocean: The role of mixoplankton. In: Tripathy, S.C., A. Singh (eds) Dynamics of Planktonic Primary Productivity in the Indian Ocean. Springer, Cham. https://doi.org/10.1007/978-3-031-34467-1_5.
  • Mitra, A., Flynn, K. J., Stoecker, D. K., & Raven, J. A. (2024). Trait trade-offs in phagotrophic microalgae: The mixoplankton conundrum. European Journal of Phycology, 59(1), 51–70. https://doi.org/10.1080/09670262.2023.2216259
  • Reguera, B., García-Portela, M., Velasco-Senovilla, E., Rial, L. Escalera, P., Díaz, P. A., & Rodríguez, F. (2024) Dinophysis, a highly specialized mixoplanktonic protist. Frontiers in Protistology. 1:1328026. https://doi.org/10.3389/frpro.2023.1328026.

  • Rodríguez, F., Escalera, L., Reguera, B., Nogueira, E., Bode, A., Ruiz-Villarreal, M., Rossignoli, A. E., Ben-Gigirey, B., Rey, V. & Fraga, S. (2024) Red tides in the Galician rías: historical overview, ecological impact, and future monitoring strategies. Environmental Science: Processes & Impacts 26, 16-34. https://doi.org/10.1039/D3EM00296A.

  • Sixto, M., Riobó, P., Rodríguez, F., Díaz, P. A., & Figueroa, R. I. (2024). Climate Change Stressors, Phosphate Limitation, and High Irradiation Interact to Increase Alexandrium minutum Toxicity and Modulate Encystment Rates. Microorganisms, 12(7). https://doi.org/10.3390/microorganisms12071480
  • Díaz, P. A., Álvarez, G., Schwerter, C., Baldrich, Á. M., Pérez-Santos, I., Díaz, M., Araya, M., Nieves, M. G., Rosales, S. A., Mancilla-Gutiérrez, G., Arratia, C., & Figueroa, R. I. (2024). Synchronic distribution of the dinoflagellate Protoceratium reticulatum and yessotoxins in a high stratified fjord system: Tidal or light modulation? Harmful Algae, 135, 102649. https://doi.org/10.1016/j.hal.2024.102649
  • Mitra, A. (2024). Importance of dynamics of acquired phototrophy amongst mixoplankton; a unique example of essential nutrient transmission in community ecology. Community Ecology. https://doi.org/10.1007/s42974-024-00202-9