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Goals and context

* FeMIP is concerned with the representation of the ocean iron cycle
within global ocean models

* These are often coupled to earth system models to make climate
change projections or address questions of contemporary ocean
functioning, biogeochemical cycling and ecosystem dynamics

* There are key challenges around external inputs and internal cycling,
especially around the feedbacks with biology

* WG goal was to deliver new datasets, new tools and new
understanding and constraints



Terms of Reference

1. How complex does the iron cycle need to be in global models?

2. How can we assess model skill in an undersampled system and
benchmark progress?

3. Intercompare sensitivity to dust deposition and constrain ocean
residence times in global models

4. Review the role of biological activity in driving the iron cycle
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Outputs — new datasets
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* Freely available:
https://zenodo.org/record/6994318
e 138 downloads
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Outputs — new datasets

Global model datasets from large
scale model intercomparison
assembled and available

Freely available with doi:
https://zenodo.org/records/5827909

11 downloads
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Global Biogeochemical Cycles

RESEARCH ARTICLE
10.1002/2015GB005289

Key Points:

« First intercomparison of 13 global iron
models highlights key challenges in
reproducing iron data

« Wide uncertainty in iron input fluxes,
which results in poorly constrained
residence times

« Reducing uncertainty in scavenging
and biological cycling is a priority
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FeMIPeval
Iron model evaluation tool with GEOTRACES IDP2017
MATLAB version

Jonathan Rogerson
Marcello Vichi
University of Cape Town, South Africa

Outputs — new tools
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New tool, FeMIPeval, for model skill assessment

Freely accessible tool for model-data assessment and skill scores
Facilitates a reproducible approach across different models
Freely accessible: https://github.com/RGRJONO002/FeMIPeval

DATA

section:
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Model mean
_Obs mean
Model std
Obs std
Pearson r
RMSD
B
AAE (MAE)
RMSD_CP
MEF
Ri

Concentration of var73 [umol Fe/m# 3]
‘ 0.6684
0.5876
0.1968
0.3811
-0.1408
0.4600
0.0808
0.3272
0.4528
-0.4569 -
2.5148




Outputs — new papers

Global

Biogeochemical Cycles

RESEARCH ARTICLE
10.1029/2021GB006948

Key Points:

+ Global marine iron model tests
varying levels of atmospheric
deposition, sedimentary release,
ligand distributions, and scavenging
rates

« Simulations that best reproduce
observations include variable ligands
and high rates of atmospheric
deposition and sedimentary release

« Simulations with high iron sources
require high scavenging rates
resulting in short residence times

 Combining GEOTRACES data with a suite of model experiments to
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Constraining Global Marine Iron Sources and Ligand-
Mediated Scavenging Fluxes With GEOTRACES Dissolved
Iron Measurements in an Ocean Biogeochemical Model
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Abstract Iron is a key micronutrient controlling phytoplankton growth in vast regions of the
olobal ocean. Desnite its imnortance. uncertainties remain high regarding external iron source fluxes

address key processes in the ocean Fe cycle

* Model experiments addressed: dust and sediment sources, as well

as ligand dynamics
* System requires high scavenging rates and low residence times
e Substantial biases with respect to observations remain
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Outputs — new constraints
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Biogeochemical Cycles e uptake scenarios from ESM projections:
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Large data synthesis effort led by Yeala Shaked (full member) =N
New means to constrain Fe bioavailability from field 0°
measurements and constrain different model scenarios w54 '
Calculation of Fe uptake rates and residence times in the e
upper ocean e
New horizons for modelling Fe uptake and bioavailability

0.1



Newly complete

e Guidelines for
biological cycling in Fe
models assessed

* Responses from 9
modelling groups

* Paper writing in
progress

d ToR4 ....

Process Least Complexity Moderate complexity Most Complexity
Model setup
1 | Physics — model >1 degree 1 degree <1 degree
resolution
2 | Typical run length Years-decades Decades-centuries Centuries-millenia,
3 | Iron sources Dust Dusi+Sediments. Dust+Sediments+Hydrothermal vents+
rivers
Fe speciation
4 | DFe-Ligand Threshold-based (i.e. Empirical (i.e. one ligand Specific ligand classes (i.e. prognostic
speciation scavenging occurs above | calculated based on DOC or simulation of one of more ligand)
set concentration) other tracers)
6 | Abiotic DFe loss Fixed scavenging rates Particle dependant scavenging | Particle dependant scavenging and
rates colloidal pumping
7 | Photochemistry None simple implicit effects Multiple roles — speciation, ligand
degradation, particle Fe dissolution
Biological Fe cycling
8 | Iron bioavailability All dFe, Differential bioavailability of Differential bioavailability of specific
Fe’ and Fel dFe and pFe complexes
9 | Iron uptake kinetics | Coupledto CorN (i.e. Explicit Michaelis Menten (i.e. | Multiple interacting components (i.e.
fixed C/Fe ratios) Fe uptake rates calculated) including feedbacks around iron
limitation and cell size)
10 | Iron limitation Monod Quota (fixed required quota) Quota (dynamic required quota)
model
12 | Regeneration of Constant proportion of Comparison of prey and Specific trophic pathways and/or
grazed Fe grazed Fe (i.e. fixed gross | predator Fe/C ratios (i.e. variable zooplankton Fe quotas
growth efficiency) variable gross growth
efficiency)
13 | Role of Bacteria Implicit role - Fe Implicit role - Fe regeneration | Explicit Fe regeneration and uptake
regeneration and uptake
Particulate Fe
cycling
14 | Downward Pfe, Martin Curve Explicit sinking particulate Fe Multiple interacting specific
export particulate Fe pools (biogenic,
lithogenic, authigenic etc)
15 | Particle flux Single b value Explicit sinking and Multiple particle size spectra and
attenuation regeneration of pFe pools with | attenuation
emergent b values
16 | DFe release from Fixed rate of release Rate of release dependant on | Release rates also modified by ligands

settling particles

bacterial activity, oxygen etc

and lithogenic particle load




* Working group efforts completed, many thanks to SCOR for their support (and patience)

; ° New avenues to deploy some of the tools developed during the life of this WG as part of GEOTRACES
plans going forward
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