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PREFACE 

This series, the Unesco Technical Papers in Marine Science, 
------------·--------·--·--------- -----

is produced by the Unesco Division of Marine Sciences as a means 
of informing the scientific co mmunity o f  recent advances in
oceanographic research and on recommended research programmes and
methods.

The texts in th is series are prepared in co-operation with 
non-governmental scientific organizations. Many o f  th e texts 
result from research activities o f  the Scientific Co mmittee on 
Oceanic Research (SCOR) and are submitted to Unesco fo r printing 
following final appro val by SCOR o f  th e relevant wo rking group 
report. 

Unesco Technical Papers in Marine Science are distributed 
__________ , ______________________ _

free of charge to various institutions and governmental autho rities. 
Requests for copies o f  individual titles or additions to the 
mailing list should be addressed, on letterhead statio nery if 
possible, to: 

Division of Marine Sciences 
Unesco 
Place de Fontenoy 
75700 Paris, France. 

The designations employed and the presentation of the material in thi s  
document do not imply the expression of any opinion whatsoever on the 
part of the Unesco Secretariat concerning the legal status of any country, 
territory, city, or area of its authorities, or concerning the delimitation 
of its froniers or boundaries. The idea s and opinions expressed are those 
of the authors and do not necessarily represent the views of Unesco. 



(i) 

Abstract 

This report contains the results of the deliberations of the Sub-Panel on Carbon Dioxide of the Joint 

Panel on Oceanographic Tables and Standards. 

Recommendations are presented for pH scales in seawater. Particular emphasis is given to a new 

set of standards that can be used in seawater or seawater-like solutions. 

Best fit equations are suggested for the first and second dissociation constants of carbonic acid and 

the dissociation constant of boric acid as functions of temperature, salinity, and pressure. In addition 

recommendations are presented for the solubility products of calcite and aragonite in seawater as func­

tions of temperature, salinity, and pressure. 

Recommendations are presented with respect to future work that will lead to the refinement of the 

the1modynamic data base on the carbonic acid system in seawater. 

RESUME 

Ce rapport contient les conclusions des deliberations du Sous-Groupe sur 
le dioxyde de carbone du Groupe mixte d'experts sur les tables et les normes 
oceanographiques. 

Des recommandations y sont presentees en ce qui concerne les echelles du 
pH dans l'eau de mer. Un accent particulier est place sur un nouvel ensemble 
de normes qui peuvent etre utilisees dans l'eau de mer ou dans des solutions 
comparables a l'eau de mer. 

Il propose des equations dormant les meilleurs resultats en ce qui con­
cerne les premiere et deuxieme constantes de dissociation de 1 'acide carbo­
nique et la constante de dissociation de 1 'acide borique en fonction de la 
temperature, de la salinite et de la pression. Des recommandations sont en 
outre presentees en ce qui concerne les produits de la dissolution de la cal­
cite et de l'aragonite dans l'eau de mer en fonction de la temperature, de la 
salinite et de la pression. 

Il contient par ailleurs des recommandations concernant des activites 
futures qui deboucheron� sur le perfectionnement de la base de donnees thermo­
dyn.amiques relatives au systeme de l'acide carbonique dans l'eau de mer. 



(ii) 

Res1m1en 

En este informe se exponen los resultados de los debates del Subgrupo 
sobre Di6xido de Carbono del Grupo Mixto de Expertos en Tablas y Normas Oceano­
graficas. 

Se formulan recomendaciones relativas a las escalas de pH en el agua de 
mar. Se hace especial hincapie en un nuevo conjunto de normas que pueden uti­
lizarse en el agua de mar y en las soluciones similares al agua de mar. 

Se sugieren ecuaciones mas adecuadas para la primera y segunda constante 
de disociaci6n del acido carb6nico y la constante de disociaci6n del acido 
b6rico en funci6n de la temperatura, la salinidad y la presi6n. Asimismo, se 
presentan recomendaciones relativas a los productos de solubilidad de la cal­
cita y el aragonito en el agua de mar en funci6n de la temperatura, la salini­
dad y la presi6n. 

Se formulan recomendaciones con respecto a las tareas que se realizaran 
• 

en el futuro para lograr el perfeccionamiento de la base de datos termo-
dinamicos sobre el sistema del acido carb6nico en el agua de mar. 

PesroMe 

naHHhlH noKnaA conep�HT pe3ynbTaThl pa6OThl nonrpynnw no nsy­
OKHCH yrnepona O6oe.rtHHeHHOH rpynnhl no oKeaHorpa�HqecKHM Ta6nHuaM H 
CTaHnapTaM. 

PeKoMeHnauHH npencTaaneHhl nng mKan pH B MopcKoA Bone. Oco6oe 
BHHMaHHe ynenHeTCH HOBOMY Ha6opy CTaHnapTOB, KOTOpbie MO�HO HCnonb-

- w ... 

30BaTb B MOpCKOH Bone H B CXO.rtHhlX C MOpCKOH BO.rtOH paCTBOpax. 

ITpennararoTcH HaH6onee npHeMneMwe ypaBHeHHH nnH nepBoA H BTopoa 
KOHCTaHThl nHCCOQHaUHH yrneKHCnOThl H KOHCTaHThl nHCCOUHaUHH 6OpHOH 

KHCnOThl KaK �YHKUHH TeMnepaTypw, coneHOCTH H naBneHHH. KpOMe Toro, 
npencTaBneHbl peKOMeHnaUHH, KacaromHeCH nponyKTOB pacTBOpHMOCTH 
KanhUHTOB H aparOHHTOB B MOpCKOH Bone KaK �YHKUHH TeMnepaTypw, 
coneHOCTH H naBneHHH. 

llaHw peKOMeHnaUHH B OTHOIDeHHH 6ynymea pa6OThl, KOTOpag no-

9BOnHT 3aHOBO onpenenHTb 6a3y TepMO�HHaMHqeCKHX naHHbIX O CHCTeMe 
yrnexHcnoThl B Mopcxoa Bone. 
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3. Thermodynamics of the CO2 system

3 

The carbon dioxide system in seawater is governed by the following equilibria: 

C02(g) = C02(aq) (3.1) 

where Ko is the solubility coefficient of carbon dioxide in seawater. Subsequently, the dissolved gas 
becomes hydrated 

KH 

C02(aq) + H20 = H2C03 (3.2) 

where KH -10-3
, so that most undissociated dissolved CO2 gas is in the CO2 (aq) fonn. In dete11ninations 

of dissociation constants one does not differentiate between CO2 (aq) and H2C03 and the sum of their 
concentrations is used. This sum is denoted by CO2•

The partial pressure of dissolved CO2 is defined by the relationship 

P(COi) = 
[CO2] 

Ko

where the quantity in brackets represents the concentration in solution. 
Furthermore upon dissociation 

K1 

C02+H20 = W+HC03 

where K 1 is the first dissociation constant of carbonic acid. 

(H+)[HCOi] 
K1 = --[C_0_2 _]_

defining the activity of water to be equal to one. 

K2 

HC03 = H+ + co;-

where K2 is the second dissociation constant of carbonic acid 

(lr)[C02
-]

K -

3 

2- [HC03]

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

All quantities in square brackets are stoichiometric concentrations; the ''activity'' of hydrogen (H+) is 
dete11nined by the pH scale used. 

In seawater, estimates of carbon dioxide speciation often rely on estimates of the titration 
alkalinity (TA) 

(3.8a) 
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most of the calculations it is convenient to evaluate the values of the in situ pH and the in situ carbonate 

alkalinity (CA= [HC03] + 2[Co}-]). 

The total borate concentration 

TB = [B(OH)4] + [B(OHh] (4.1) 

is conservative in seawater, i.e., proportional to salinity (Culkin, 1965). Thus, combining (3.8a) and (4.1) 

yields 

CA =TA-TB/(1 + (H+)/K8) - [Olr] + [Ir] (4.2a) 

in which the terms for [OH-] and [H+] are often ignored, especially if the imprecision in TA is greater 

than 5x10-6 mol/kg, thus yielding 

(4.2b) 

Of course 

(4.3) 

and TA and TC02 are independent of temperature and pressure if expressed in concentration units of 

moles per kilogram of seawater (Dyrssen and Sillen, 1967). 

From the the11nodynamic relationships described in this section and the previous section one derives 

(c.f., Skirrow, 1965) 

[C0/7 = CA/(2 + (W)/Ki) 

and 

and thus 

CA= TCO2 • (1 + 2K2J'(H+)) / (1 + (lr)/K1 + K2J'(lr)) 

and combining with (4.2b), c.f., Edmond and Gieskes (1970) 

(W)3 A+ (H+)2(K 1(A-1) + K8(A-B)) 

+ (H+)(K1Ka(A-B-l) + K1K2(A-2)) + K 1K2KB(A-B-2) = 0

where A= TA/fC02 - 1.5 and B = TB/I'C02 -0.18. 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

If greater accuracies are warranted by the data, a combination of equations (4.2a) and (4.6) will 

yield an equation containing the fifth power of (Ir) and Kw. 

Equation (4.7) can be solved for the in situ value of (Ir) using values of K 1,K2,KB at the appropri­

ate in situ temperature, pressure, and salinity. Hence, CA, [Co;-], and [HC03] can be calculated for in

situ conditions. 
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Classically a combination of pH and TA has been measured at a specified temperature and pressure 

(Harvey, 1955), from which, of course TCO2 can be computed, and thus equation (4.7) can be applied 

subsequently. Other workers have used measurements of P(CO2) and TC02. With this infor1nation the 

pH can be evaluated as well as TA. The various combinations of measuring parameters and their subse­

quent use in carbon dioxide system calculation have been discussed by Park (1969). We advocate the 

dete11nination of TA and TC02 independently, especially because each quantity is of intrinsic interest in

chemical oceanography. 

Keir (1979) also suggested a more direct method for the evaluation of the carbonate ion concentra­

tion from TA and TCO2, but this method also ignores the species OH- and H+.

Calculations of the degree of saturation of calcium carbonate are based on the evaluation of the in

situ concentration of the product of Ca2+ and cof- concentrations, and the in situ value of the solubility 

product: 

(4.8) 

The calcium concentration is approximately conservative (Culkin, 1965).

5. Solubility of Carbon Dioxide

The ad-hoc group discussed the data available on the solubility of carbon dioxide in seawater. It 

was decided that the forrnula provided by Weiss (1974) gives the best representation of CO2 gas solubil­

ity as a function of temperature and salinity as measured by Murray and Riley (1971) and Weiss (1974).

In K
0 

= A 1 + A2(100/f) + A3 ln(T/100)

+ S[B 1 + B2(T/l00) + B3(T/100)2
]

(5.1) 

where K0 may be expressed either in mol dm-3 aun-1 (referred to a dm3 of solution at the temperature of 

measurement and one atmosphere fugacity in the gas phase) or in mol kg-1 atm-1 (referring to one kilo­

gram of solution). T is the thermodynamic temperature (K) and S the salinity. Ai and Bi are constants 

and are given in the following table: 

mol dm-3 aun-1 mol kg-1 (seawater) aun-1

A 1 -58.093 I -60.240 9

A2 90.506 9 93.451 7

A3 22.294 0 23.358 5

B 1 0.027 766 0.023 517 

B2 -0.025 888 -0.023 656

B3 0.005 057 8 0.004 703 6



6. Symbols for pH and related quantities

7 

In the description of weak acid equilibria various types of pH scales and various defmitions of 

equilibrium constants have been used. These various approaches have been reviewed recently by Dick­

son (1984), whose contribution is attached to this report as Annex 1. 

Below we propose four sets of symbols depending on the standard state chosen for hydrogen ions, 

and on the concentration units used. Current usage has been maintained as far as is consistent with an 

unambiguous set of symbols. 

1 The N.B.S. pH scale. 

The 'free' hydrogen ion con­

centration scale (mol/k.g-H20). 

The 'total' hydrogen ion con­

centration scale (mol/kg-H20). 

The 'total' hydrogen ion con­

centration scale (mol/kg-soln). 

(1) National Bureau of Standards

(2) Mehrbach et al. (1973)

(3) Bates and Culberson (1977)

(4) Hansson (1973a)

Notes:

[H]sws :::T[H] 

pH(NBS) pK' 

PKui 

pH(SWS) 

Ref. 

(2) 

(3) 

(4) 

(a) The symbol p in pmH, pK etc. retains its usual meaning of -lg X, where X is the appropriate dimen­

sionless quantity. In pm8 , strictly the quantity is the ratio mH/m0
, where m0 is assigned the value of

1 mol/kg-H20.

(b) mH(SWS) is a quantity proportional to mH and is defined by the equation

mH(SWS) = mH(l + �Hso. Tmso◄ + �HF
Tmp)'

whereas the total analytical concentration of hydrogen ion is given by 

TmH =mH + mHS04 + mHp+ . . .

(A similar distinction exists between [H]sws and T[H].) 
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maintained. Thus, the pH values of the 0.005 mo1/kg-H20 and 0.02 mo1/kg-H20 Tris buffers are nearly 

identical (see also Millero, 1986). The reference values of pmH listed in Tables 6.1.1 and 6.1.II have 

estimated uncertainties of ±0.004 unit. 

6.2 Relationship between pmH and pmH(SWS)

The interconversion of pmH and pmH(SWS) is readily carried out when values of the fonnation con­

stants �i of the species HS04 and HF are known. Thus, 

(6.2.1) 

= pmH -Ll

where � is a function of temperature and salinity. From the measurements of Khoo et al. (1977) in 

fluoride-free synthetic seawaters, it has been shown (Bates, 1985) that log PHso. for salinities from 20 to 

45 and temperatures from 5 to 40°C is given by 

log f3Hso
4 
= 1121.l/f-45.2167 

+ 7.484 ln T + 0.0011984S -l.2613x10-4S2

(6.2.2) 

where T is the thennodynamic temperature. The standard deviation of fit is 0.0068 in log PHso.- Combi­

nation of Equations (6.2.1) and (6.2.2) shows that the difference (�) between pmH(SWS) and pmH at a 

salinity of 35 has the following values in the range to 5 to 40°C: 

t/
O

C: 5 10 15 20 25 30 35 40 

A: 0.077 0.088 0.100 0.114 0.129 0.146 0.164 0.185 

Millero (1986) has reevaluated this problem and provides infonnation over the range of S = 1-40 

and t = 5-40°C (see also Annex 2). 

6.3 Experimental measurementofpmH andpmH(SWS)

Values of pmH(SWS) and pmH can be obtained experimentally from measurements of the emf (E) 

of the pH cell 

Reference electrode I KC1(3.5M or saturated) I I Seawater (X) I glass electrode (6.3.1) 

standardized with a standard buffer (S) prepared in a synthetic seawater without fluoride, of a composi­

tion close to that of the "unknown" seawater (X). The operational pH fonnula then applies: 

H(X) = H(S) -
(Ex - Es)Fp p 
RT In 10 

(6.3.2) 
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do not provide this advantage, and can cause much larger errors in the extrapolated values below S = 20. 

Thus, it is probable that the precision of the pooled data set represents a reasonable estimate for the 

accuracy of the dissociation constants of carbon dioxide in seawater at this time. It is, therefore, useful to 

assess what contribution this magnitude of errors contributes to the various derived quantities such as 

P(C02) or [Co;-]. This info11nation can be estimated from the paper by Dickson and Riley (1978). The 

resultant error, due to errors in K; and KI, depends upon the particular combination of analytical parame­

ters used, i.e., the choice from pH, P(C02), TA and TC02 and to a lesser extent upon the specific condi­

tions (i.e., S and T). Thus for the observable combination pH and CA, i.e., discounting the effect of error 

in KB, the value of [CO2], and hence P(C02), varies by 1 % for each 1 % error in K;(±0.017 in pK; = 4% 

in K{). The error in the calculation of [Co/-] is similarly dependent on the error in K; (±0.031 in pK; = 

±7.4% in K;). These errors are approximately the same magnitude as the errors due to the experimental 

measurements (except for the very best data, when the errors in the constants would be expected to dom­

inate). 

An indication of the extent of the shortcomings of the proposed equations is given in Figure 1. In 

this figure P(C02), calculated using the equations above and data for TA (by titration) and TC02 (by 

extraction and manometric detennination), is compared with the values of P(C02) measured directly 

(using gas chromatography). The data represent a variety of samples from the North Atlantic covering a 

range of temperature and it is apparent that there is a systematic discrepancy, the extent of which varies 

with temperature. The maximum deviation corresponds to an error of -0.03 in p(K;/K;), i.e., within the 

estimated error bounds for the equations. 

It is thus apparent that the very best analytical measurements are accurate enough to make demands 

on the accuracy of the constants which is beyond our current knowledge of them. However, the current 

data on the constants are probably adequate for a variety of purposes. In the event that more reliable data 

for the constants become available it may be appropriate to reconsider these recommendations. 

The pooled data are based on the pH(SWS) scale: it is thus necessary to employ this scale when 

using these constar1ts. It would have been impossible to correct the data to the pH(NBS) scale, as this 

would introduce further uncertainties. 
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Jones of the Bedford Institute of Oceanography (0), the TC02 data by C.D. Keeling's group at S.1.0., and 

the P(CO:i) by R.F. Weiss's group from S.1.0. 
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9. Pressure dependence of dissociation constants

Disteche and Disteche (1967) as well as Culberson and Pytkowicz (1968) measured the effect of 
pressure on the dissociation constants of carbonic acid potentiometrically at 25°C. The two sets of results 
are in good agreement. Culberson and Pytkowicz (1968) studied the pressure effect over a range of tem­
peratures. The results agree well with those obtained from partial molal volume data (Millero, 1983). 

Millero (1979) presented a for111ula that adequately describes the pressure dependence as a function 
of temperature and salinity: 

where 
-�Vi = a0 + a1 (S-34.8) + a2t + a3t2

-103�Ki = b0 + b 1 (S-34.8) + b2t

and t is in °C. 

The constants are summarized below. 

Coefficients for equation (9.1) for the pressure 
dependence of dissociation constants K1, K2 and KB t 

Acid 

B(OH)3 

H2CO3 
HC03 

29.48 

25.50 
15.82 

-0.295

0.151 

-0.321

-0.1622

-0.1271

0.0219

103a3

2.608 

--

2.84 

3.08 

-1.13

-0.354

0.578
0.314 

--

-0.0877

0.1475

(9.1) 

0.0030 

0.0043 

0.0042 

t The appropriate range of validity is S = 20-40; t = 0-30°C, i.e., the range applicable to >99% of sea­
water. 

10. Solubilities of calcium carbonates

The study of the solubilities of calcium carbonates is presently in a state of flux. This is due to the 
occurrence of metastable, kinetically controlled phases (Pytkowicz and Cole, 1979), to the presence of 
conventional single equilibrium states (Plummer and MacKenzie, 1974), to multistate the11nodynamics 
(Wollast and Reinhard-Derie, 1977; Pytkowicz and Cole, 1979), and to the possible occurrence of surface 
coatings of compositions different from those of the bulk phases (Weyl, 1967; Moller and Parekh, 1975). 

IO. I Aragonite

Commonly it has been assumed that solubility detenninations of aragonite in seawater are relatively 
easy to carry out because of the lesser interference of Mg2+ ions. Surprisingly aragonite solubility pro­
ducts scatter more than those of calcite (UNESCO, 1983). This is a hitherto unexplained effect in 
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saturation runs wl1ich reach steady state pH and alkalinity values within a few hours at most. On the 

other hand, long term storage depresses the solubility. This is probably because aragonite is a metastable 

phase, which is converted gradually into a low magnesium calcite (Morse, 1980). 

10.2 Calcite 

The solubility product of reagent grade calcite has been reasonably well characterized by several 
-

observers (UNESCO, 1983). The solubility data at higher pressures, however, reveal discrepancies which 

may be due to some irreversibility of pH measurements during compression and decompression (Pyt­

kowicz and Fowler, 1967). Ingle (1975), however, did find little hysteresis, so that pressure work 

deserves further attention. The partial molal volume approach of Millero (1983) can provide answers for 

pure phases. 

The inorganic precipitation of calcite occurs only in special circumstances, such as when calcareous 

cements and overgrowths are fonned, during evaporation of closed basins, and in interstitial waters of 

sediments rendered highly alkaline as a result of sulfate reduction processes. 

Rapid precipitation of calcium carbonate can lead to a rate controlled metastable CaxMg1_x(CO3)

bulk phase or surface phase. The metastability of such solids can persist for long periods, especially 

when solid diffusion, rather than redissolution is the mechanism involved in progress to equilibrium. 

Laboratory experiments often lead to the fo11nation of low Mg-calcites (with >2 mol% Mg), whereas 

naturally produced calcite in the ocean (i.e., calcareous skeletons of foraminifera and nano-plankton) are 

usually very low Mg-calcites with Mg/Ca molar ratios of <50 x 10-4, or <0.5 mo!% Mg. The exact 

equilibrium M
g

/Ca ratio in stable Mg-calcite in the ocean is as yet unknown, and the subject of further 

investigation. 

10.3 Solubility products of aragonite and calcite 

Below we summarize some of the thennodynamic info1mation available on solubility products at 

25°_C and S = 35 (Morse et al., 1980; UNESCO, 1983). 

•
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The pressure dependence of lhe solubility product can be described by the following fortnula (Mil­

lero, 1979) 

where for calcite 

-� V c = 48.76 - 0.5304t

-103�Kc = 11.76-0.3692t

(10.3.5) 

(10.3.6a) 

(10.3.6b) 

For aragonite one must assume that �VA -2.8cm3mo1-1 lower than � V c, and that �KA -�Kc.

Further measurements are needed to resolve whether this is an allowable assumption (Millero, 1979). In 

addition little info11nation is available on the effect of salinity. 

11. Suggestions for future work

Though for many purposes the thennodynamic info11nation contained in this report will be 

sufficient, various improvements can still be made. Below we summarize some of these needs. 

11.1 pH buffers 

Though the buff er solutions described in Section 6 will help set the stage for the more convenient 

measurement of pH using buffers in seawater-like solutions, the values of the buffers only cover the 

higher range of no11nally measured pH in seawater (pH = 8 - 9). A search for a third standard of pm8(S) 

= 7 or 7 .5 would be most useful. A I: 1 buffer composed of 2-aminopyridine and its hydrochloride may 

prove suitable for this purpose. The pmi-1 of this buffer in seawater of salinity 35 has been found to range 

from 7.3 at 5°C to 6.9 at 25°C (Erickson, 1980). More work ori this proposed buffer is necessary. 

11.2 Dissociation constants 

As was pointed out in section 8, the overall precision of either the individual data sets or the pooled 

data sets leave room for improvement. Further work, especially over the no11nal seawater range of salini­

ties (S = 30 - 40) and temperatures (t = 0 - 30°C) should be carried out. At present such efforts are under­

way in at least two laboratories (A. Poisson, University of Pa1is and A. Dickson, Scripps Institution of 

Oceanography). We propose adoption of the present pooled data set, with the proviso that in a few years 

from the publication of this report, improvements to the suggested fo1111ulae may be warranted. Mean­

time overdete11nination of parameters, as demonstrated in Figure 6.1, will also help in any future 

refinement of the thennodynamic infortnation. 

11.3 Solubility of calcium carbonate 

Much progress has been made in the measurement of the solubility products of calcite and aragonite 

(Mucci, 1983). However, further research is still called for, especially with respect to the pressure depen­

dence of the solubility products. 

•
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